Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

PHOTOLUMINESCENCE FROM RARE EARTH IONS DOPED NANOCRYSTALS

Identifieur interne : 000D82 ( Chine/Analysis ); précédent : 000D81; suivant : 000D83

PHOTOLUMINESCENCE FROM RARE EARTH IONS DOPED NANOCRYSTALS

Auteurs : RBID : Pascal:10-0055379

Descripteurs français

English descriptors

Abstract

Research and development of nanoscale luminescent and laser materials are part of the rapidly advancing nanoscience and nanotechnology. Besides well-known quantum dots, lanthanide-doped oxide nanocrystals form a new promising class of nanophosphors in view of various application because of unique spectroscopic properties related to two types of electronic transitions: 4 f - 4 f and 4 f - 5d transitions. The subjects of this review are the synthesis of rare earth ions doped nanocrystals and their spectral properties. We begin this review with some introductory comments on the nature of spectroscopy of rare earth ions, and then discuss an important issue that also needs to be addressed is whether the rare earth ions are really being incorporated in the host lattice in the synthesis of rare earth ions doped nanocrystals. A crucial test for the incorporation is an excitation spectrum of the rare earth emission. Citing examples suggest that some of the difficulties encountered in nanodoping are often attributed to "self-purification". Finally, we will discuss the effect of nanostructure on the optical properties of rare earth ions. Specifically, the various mechanisms of spectral properties of rare earth ions from in bulk to in nanocrystals are detailed. The luminescence properties of rare earth doped nanocrystals differ from corresponding bulk materials in several ways: (i) spectroscopic changes, as a broadening and shift(related to the 5d energy level change) of the luminescence bands in nanocrystals, resulting from a structural disorder intrinsic to the small size; (ii) a lower luminescence quantum yield related to the presence of chemical species adsorbed at the surface, especially the OH groups; (iii) a shift towards higher values of the optimum doping concentration, due to the alteration of energy transfers rate from luminescence centers to quenching centers; (iv) new luminescent peak occurs due to the new site occupation of rare earth ion on the surface or another phase; (v) the change of photoluminescence decay time due to surface-bound centers. All the results are emphasis on the photoluminescence from the rare earth-doped oxide nanocrystals in the last 15 years.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0055379

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">PHOTOLUMINESCENCE FROM RARE EARTH IONS DOPED NANOCRYSTALS</title>
<author>
<name>ZUOLING FU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy Sciences</s1>
<s2>Changchun 130022</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Changchun</settlement>
<region type="province">Jilin</region>
<region type="groupement">Dongbei</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Pukyong National University</s1>
<s2>Busan 608-737</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Busan 608-737</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SIYUAN ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy Sciences</s1>
<s2>Changchun 130022</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Changchun</settlement>
<region type="province">Jilin</region>
<region type="groupement">Dongbei</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0055379</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 10-0055379 INIST</idno>
<idno type="RBID">Pascal:10-0055379</idno>
<idno type="wicri:Area/Main/Corpus">004B15</idno>
<idno type="wicri:Area/Main/Repository">004E30</idno>
<idno type="wicri:Area/Chine/Extraction">000D82</idno>
</publicationStmt>
<seriesStmt>
<title level="j" type="main">Nanotechnology research journal</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Doping</term>
<term>Electronic transition</term>
<term>Energy levels</term>
<term>Energy transfer</term>
<term>Excitation spectrum</term>
<term>Indium additions</term>
<term>Laser materials</term>
<term>Luminescence</term>
<term>Nanocrystal</term>
<term>Nanometer scale</term>
<term>Nanostructured materials</term>
<term>Nanostructures</term>
<term>Nanotechnology</term>
<term>Optical properties</term>
<term>Optical transition</term>
<term>Phosphors</term>
<term>Photoluminescence</term>
<term>Purification</term>
<term>Quantum wells</term>
<term>Quantum yield</term>
<term>Quenching</term>
<term>Rare earths</term>
<term>Research and development</term>
<term>Reviews</term>
<term>Site occupation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photoluminescence</term>
<term>Dopage</term>
<term>Nanocristal</term>
<term>Nanomatériau</term>
<term>Recherche et développement</term>
<term>Nanostructure</term>
<term>Echelle nanométrique</term>
<term>Matériau luminescent</term>
<term>Matériau laser</term>
<term>Nanotechnologie</term>
<term>Puits quantique</term>
<term>Lanthanide</term>
<term>Transition électronique</term>
<term>Transition optique</term>
<term>Article synthèse</term>
<term>Spectre excitation</term>
<term>Purification</term>
<term>Propriété optique</term>
<term>Luminescence</term>
<term>Niveau énergie</term>
<term>Rendement quantique</term>
<term>Transfert énergie</term>
<term>Trempe</term>
<term>Occupation site</term>
<term>Addition indium</term>
<term>7867</term>
<term>8107B</term>
<term>6865</term>
<term>8107S</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Recherche et développement</term>
<term>Nanotechnologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Research and development of nanoscale luminescent and laser materials are part of the rapidly advancing nanoscience and nanotechnology. Besides well-known quantum dots, lanthanide-doped oxide nanocrystals form a new promising class of nanophosphors in view of various application because of unique spectroscopic properties related to two types of electronic transitions: 4 f - 4 f and 4 f - 5d transitions. The subjects of this review are the synthesis of rare earth ions doped nanocrystals and their spectral properties. We begin this review with some introductory comments on the nature of spectroscopy of rare earth ions, and then discuss an important issue that also needs to be addressed is whether the rare earth ions are really being incorporated in the host lattice in the synthesis of rare earth ions doped nanocrystals. A crucial test for the incorporation is an excitation spectrum of the rare earth emission. Citing examples suggest that some of the difficulties encountered in nanodoping are often attributed to "self-purification". Finally, we will discuss the effect of nanostructure on the optical properties of rare earth ions. Specifically, the various mechanisms of spectral properties of rare earth ions from in bulk to in nanocrystals are detailed. The luminescence properties of rare earth doped nanocrystals differ from corresponding bulk materials in several ways: (i) spectroscopic changes, as a broadening and shift(related to the 5d energy level change) of the luminescence bands in nanocrystals, resulting from a structural disorder intrinsic to the small size; (ii) a lower luminescence quantum yield related to the presence of chemical species adsorbed at the surface, especially the OH groups; (iii) a shift towards higher values of the optimum doping concentration, due to the alteration of energy transfers rate from luminescence centers to quenching centers; (iv) new luminescent peak occurs due to the new site occupation of rare earth ion on the surface or another phase; (v) the change of photoluminescence decay time due to surface-bound centers. All the results are emphasis on the photoluminescence from the rare earth-doped oxide nanocrystals in the last 15 years.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA05>
<s2>2</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>PHOTOLUMINESCENCE FROM RARE EARTH IONS DOPED NANOCRYSTALS</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZUOLING FU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SIYUAN ZHANG</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy Sciences</s1>
<s2>Changchun 130022</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, Pukyong National University</s1>
<s2>Busan 608-737</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>1-24</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>28014</s2>
<s5>354000171714560010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>101 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0055379</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="2">
<s0>Nanotechnology research journal</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Research and development of nanoscale luminescent and laser materials are part of the rapidly advancing nanoscience and nanotechnology. Besides well-known quantum dots, lanthanide-doped oxide nanocrystals form a new promising class of nanophosphors in view of various application because of unique spectroscopic properties related to two types of electronic transitions: 4 f - 4 f and 4 f - 5d transitions. The subjects of this review are the synthesis of rare earth ions doped nanocrystals and their spectral properties. We begin this review with some introductory comments on the nature of spectroscopy of rare earth ions, and then discuss an important issue that also needs to be addressed is whether the rare earth ions are really being incorporated in the host lattice in the synthesis of rare earth ions doped nanocrystals. A crucial test for the incorporation is an excitation spectrum of the rare earth emission. Citing examples suggest that some of the difficulties encountered in nanodoping are often attributed to "self-purification". Finally, we will discuss the effect of nanostructure on the optical properties of rare earth ions. Specifically, the various mechanisms of spectral properties of rare earth ions from in bulk to in nanocrystals are detailed. The luminescence properties of rare earth doped nanocrystals differ from corresponding bulk materials in several ways: (i) spectroscopic changes, as a broadening and shift(related to the 5d energy level change) of the luminescence bands in nanocrystals, resulting from a structural disorder intrinsic to the small size; (ii) a lower luminescence quantum yield related to the presence of chemical species adsorbed at the surface, especially the OH groups; (iii) a shift towards higher values of the optimum doping concentration, due to the alteration of energy transfers rate from luminescence centers to quenching centers; (iv) new luminescent peak occurs due to the new site occupation of rare earth ion on the surface or another phase; (v) the change of photoluminescence decay time due to surface-bound centers. All the results are emphasis on the photoluminescence from the rare earth-doped oxide nanocrystals in the last 15 years.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07S</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Recherche et développement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Research and development</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Investigación desarrollo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Echelle nanométrique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanometer scale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Matériau luminescent</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Phosphors</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Matériau laser</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Laser materials</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Nanotechnologie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Nanotechnology</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Lanthanide</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Rare earths</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Transition électronique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Electronic transition</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Transición electrónica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Transition optique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Optical transition</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Transición óptica</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Article synthèse</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Reviews</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Spectre excitation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Excitation spectrum</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Espectro excitación</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Purification</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Purification</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Luminescence</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Luminescence</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Niveau énergie</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Energy levels</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Rendement quantique</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Quantum yield</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Transfert énergie</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Energy transfer</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Trempe</s0>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Quenching</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Occupation site</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Site occupation</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>39</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>6865</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>8107S</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>039</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D82 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000D82 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:10-0055379
   |texte=   PHOTOLUMINESCENCE FROM RARE EARTH IONS DOPED NANOCRYSTALS
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024